

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL

Programa de asignatura por competencias de educación superior

Sección I. Identificación del Curso

Tabla 1. Identificación de la Planificación del Curso.

Actualización:	Marzo 12, 2024	larzo 12, 2024							
Carrera:	Ingeniería Mecatrónica			Asignatura:	Micro robótica				
Academia:	Control /			Clave:	19SMERO03				
Módulo formativo:	Especialidad			Seriación:					
Tipo de curso:	Presencial			Prerrequisito:	19SME15 - Robótica				
Semestre:	Séptimo Créditos : 4.50			Horas semestre:	stre: 72 horas				
Teoría:	3 horas	Práctica:	1 hora	Trabajo indpt.:	0 horas	Total x semana:	4 horas		

Sección II. Objetivos educacionales

Tabla 2. Objetivos educacionales

	Objetivos educacionales	Criterios de desempeño	Indicadores
1	El egresado solucionará problemas del	El egresado aplicará las técnicas y metodologías para la	% de alumnos que implementan diversidad de técnicas y
	entorno laboral en el que se desempeñe,	identificación de problemas referentes a su entorno laboral,	metodologías para identificar problemas en su entorno laboral.
	mediante el uso de conocimientos técnicos	proponiendo soluciones creativas e innovadoras para los mismos.	
	adquiridos para la identificación, desarrollo		
	innovador, aplicación y control de las posibles		
	soluciones, utilizando sus habilidades en		
	mecánica, electrónica, control y		
	automatización para dar el resultado		
	adecuado según las condiciones del		
	problema.		
2	El egresado diseñará, mejorará o mantendrá	El egresado fundamentará documentalmente la solución a	% de egresados que diseñan, mejoran o dan mantenimiento a
	de forma eficiente y sustentable equipos que	problemas, desde la identificación hasta su resolución.	equipos.
	cubran adecuadamente las diferentes		
	necesidades del ámbito laboral, utilizando sus		
	competencias técnicas de diseño, con sus		
	conocimientos de materiales, control y		
	procesos para lograr la mejor solución		
	innovadora de la necesidad planteada.		
3	El egresado generará relaciones	El egresado desarrollará canales de comunicación y de gestión	% de egresados que participan en más de un departamento y/o
	interpersonales y profesionales de otras	con departamentos y áreas relacionadas con los proyectos que	área por proyecto con las que se relaciona.
	áreas, para desarrollar habilidades técnicas,	lidera y coordina.	
	administrativas y colaborativas en el		
	desarrollo de proyectos mecatrónicos.		

Atrib	outos de egreso de plan de estudios	Criterios de desempeño	Componentes
1	Identificar y resolver problemas en el campo	- Comprenderá el funcionamiento y modelado de sistemas de	1. Control de robots.
	de la mecatrónica aplicando los principios de	control a procesos electromecánicos aplicados en la robótica.	1.1. Conceptos de control.
	las ciencias básicas como la matemáticas y		1.1.1. Familiarización con el sistema físico a controlarse.
	física, así como otras ciencias de la		1.1.2 Modelado dinámico.
	ingeniería.		1.1.3 Especificaciones de control.
			1.1.4 Control de movimiento de robots manipuladores.
			1.2. Fundamentos matemáticos del control de robots
			manipuladores.
			1.2.1 Fundamentos del álgebra lineal.
			1.2.2 Puntos de equilibrio.
			1.2.3 Estabilidad en el sentido de Lyapunov.
			1.2.3.1 El concepto de equilibrio.
			1.2.3.2 Definición de estabilidad.
			1.2.3.3 Funciones de Lyapunov.
			1.2.3.4 Método directo de Lyapunov.
2	Desarrollar procesos y productos industriales	- Aprenderá y aplicará modelos matemáticos a través de	2. Control de posición del robot manipulador (P y PD compensada
	desde un enfoque mecánico, electrónico,	simuladores y sistemas robóticos para identificar y proponer	de gravedad).
	robótico, automatización y control, utilizando	soluciones en aplicaciones industriales de robots manipuladores.	2.1. Control P con retroalimentación de velocidad y Control PD.
	el juicio ingenieril para establecer		2.1.1. Robots sin el término de la gravedad.
	conclusiones.		2.1.2. Robots con el término de la gravedad.
			2.1.2.1. Equilibrio único.
			2.1.2.2. Acotamiento del error de posición y de la velocidad.
3	Aportar soluciones creativas a problemas de	- Creará soluciones eficientes y creativas para problemas	3. Control de posición del robot manipulador (PD compensada
	ingeniería mecatrónica de manera autónoma	industriales, utilizando conocimientos, habilidades y técnicas de	precalculada de gravedad y PID).
	y en equipo.	control de robots manipuladores.	3.1. Control PD con compensación precalculada de gravedad.

	Continuación: Tabla 2. Objetivos educacionales (continuación						
No.	Atributos de egreso de plan de estudios	Criterios de desempeño	Componentes				
		- Generará relaciones interpersonales y profesionales en las	3.1.1. Acotamiento de errores de posición y de la velocidad.				
		diferentes áreas que conforman la robótica industrial; para crear	3.1.2. Equilibrio único.				
		habilidades administrativas y colaborativas en el desarrollo de	3.1.3. Estabilidad asintótica global.				
		proyectos robóticos.	3.1.4. Función de Lyapunov para estabilidad asintótica global.				
			3.2. Control PID.				
			3.2.1 Función candidata de Lyapunov.				
			3.2.2 Derivada temporal de la función candidata de Lyapunov.				
			3.2.3 Estabilidad asintótica.				
			3.2.4 Procedimiento de sintonía.				
			4. Control de movimiento.				
			4.1. Control por precompensación y Control PD con				
			precompensación.				
			4.1.1 Control por precompensación.				
			4.1.2 Control PD con precompensación.				
			4.1.2.1 Equilibrio único.				
			4.1.2.2 Estabilidad asintótica global.				
			4.2. Control PD+ y Control PD con compensación.				
			4.2.1 Control PD+.				
			4.2.1.1 Función de Lyapunov para estabilidad asintótica.				
			4.2.2 Control PD con compensación.				
			4.2.3 Conclusiones.				
			4.3. Control Par-Calculado y Control Par-Calculado+.				
			4.3.1 Control Par-Calculado.				
			4.3.2 Control Par-Calculado+.				

Sección III. Atributos de la asignatura

Tabla 3. Atributos de la asignatura

Problema a resolver

Evaluar, seleccionar y aplicar eficientemente los fundamentos y herramientas del control de robots manipuladores para la solución de problemas de ingeniería.

Atributos (competencia específica) de la asignatura

Conocer e implementar los métodos de control de robots manipuladores.

Aportación a la con	Aportación a las competencias transversales	
Saber	Saber hacer	Saber Ser
- Conocer los fundamentos básicos del control de robots	- Manejar los sistemas y conceptos básicos del control de robots	- Trabajo colaborativo y comunicación interpersonal.
manipuladores, así como de los sistemas de robóticos.	manipuladores.	- Puntualidad y responsabilidad.
- Conocer el modelado dinámico a partir de herramientas	- Establecer la importancia del control del sistema dinámico	- Creatividad y resolución de problemas.
matemáticas de diferentes representaciones de robots	de robots en la ingeniería.	- Trabajo en equipo.
manipuladores.	- Usar de manera asertiva los distintos métodos y herramientas	- Actitud autocrítica.
- Identificar herramientas para el diseño de control de posición y	para el diseño de controladores de sistemas robóticos.	
movimiento de robots manipuladores.	- Implementar los conocimientos adquiridos en casos prácticos.	
	- Manejar métodos para la resolución de sistemas de control	
	complejos.	
	- Diseñar sistemas de control robóticos óptimos.	

Producto integrador de la asignatura, considerando los avances por unidad

Portafolio de evidencias donde se contemplan actividades: tareas, los mapas mentales y/o conceptuales, uso de software para simulación y reporte de una práctica de control de un proceso en tiempo real.

Tabla 4.1. Desglose específico de la unidad "Introducción al control de robots manipuladores y sus fundamentos matemáticos."

Número y nombre de la u	unidad:	1. Introducción al control de rob	oots manipuladore	es y sus fundamentos n	natemáticos.			
Tiempo y porcentaje para esta u	unidad:	Teoría: 6 ho	oras	Práctica:	4 horas	Porcentaj	e del programa:	13.89%
Aprendizajes espe	erados:	Comprender y aplicar los funda	mentos de mode	lados de robots manipu	ıladores para su control.			
Temas y subtemas (secuencia)		Criterios de desempeño	Estrateg	jias didácticas	Estrategias de ev	aluación		grador de la unidad endizaje de la unidad)
1. Control de robots.	Saber:		Estrategia Pre-inst	ruccionales:	Evaluación diagnóstica:		Portafolio de evider	ncias donde se
1.1. Conceptos de control.	- Conoce	er los fundamentos he importancia	- Identificar conoci	miento previo.	- Examen de diagnóstico p	or medio de un	contemplan las acti	vidades, tareas, los
1.1.1. Familiarización con el sistema físico	del mode	elado dinámico de robots			cuestionario escrito o en u	na plataforma	mapas mentales y/	o conceptuales, uso de
a controlarse.	manipula	dores, así como la importancia del	Estrategia Co-instr	uccionales:	digital.		software para simu	ación por computadoras
1.1.2 Modelado dinámico.1.1.3 Especificaciones de control.1.1.4 Control de movimiento de robots	control e	n la robótica.	herramientas didád	ocente con ayuda de cticas/electrónicas.	Evaluación formativa: - Actividades y tareas de a	prendizaje como	un sistema de cont manipuladores.	rol de robots
manipuladores. 1.2. Fundamentos matemáticos del control	Saber ha	ocer:	a los contenidos pr	ropuestos en la unidad.	mapas mentales y/o conce	. ,		
de robots manipuladores.	robóticos	para la representación de su	apoyo didáctico.		Evaluación Sumativa:			
1.2.1 Fundamentos del algebra lineal.	comporta	amiento en función del espacio de	. ,		- Examen teórico sobre un	caso de estudio		
1.2.2 Puntos de equilibrio.	trabajo o	condiciones físicas.	Estrategia Post-ins	struccionales:	popular de un robot manip	ulador,		
1.2.3 Estabilidad en el sentido de			- Elaboración de m	apas mentales y/o	cinemática y dinámica.			
Lyapunov.	Ser:		conceptuales. Res	olución de dinámicas,				
1.2.3.1 El concepto de equilibrio.	Trabajo d	colaborativo, comunicación	tareas, trabajos y/o	actividades.				
1.2.3.2 Definición de estabilidad.	efectiva	y autonomía en el aprendizaje.	- Uso de software	para simulación por				
1.2.3.3 Funciones de Lyapunov.								
1.2.3.4 Método directo de Lyapunov.								

The Parist of th	2

Continuación: Tabla 4.1. Desglose específico de la unidad "Introducción al control de robots manipuladores y sus fundamentos matemáticos."						
Temas y subtemas (secuencia)	Criterios de desempeño	Estrategias didácticas	Estrategias de evaluación	Producto Integrador de la unidad		
		computadoras sobre los subtemas vistos y				
		aprendidos en la unidad.				

- Kelly, R.; Santibáñez, V. (2003). Control de Movimiento de Robots Manipuladores. México: Pearson Education.
- Spong, M.W.; Vidyasagar, M. (2008). Robot Dynamics and Control. USA: Wiley India Pvt.
- Barrientos, A.; Cruz, A.B.; Peñín, L.F.; Balaguer, C. (2007). Fundamentos de robótica. México: McGraw-Hill.
- Marco A.; Pérez, E. A.; Navarro, D. (2014). Fundamentos de robótica y mecatrónica con MATLAB y Simulink. México: Alfaomega: Ra-Ma.
- Cortés, F.R. (2011). Robótica: Control de Robots Manipuladores. México: Alfaomega.

Tabla 4.2. Desglose específico de la unidad "Control de posición del robot manipulador (P y PD compensada de gravedad)."

Número y nombre de la unidad:		2. Control de posición del robo	t manipulador (P y PD compensada de g	gravedad).			
Tiempo y porcentaje para esta unidad:		Teoría: 6 h	oras Práctica:	4 horas	Porcentaj	e del programa:	13.89%
Aprendizajes espe	erados:	Comprender la importancia de	I control P y PD compensada de graveda	ad, de posición de robots			
Temas y subtemas (secuencia)		Criterios de desempeño	Estrategias didácticas	Estrategias de ev	aluación		rador de la unidad endizaje de la unidad)
2. Control de posición del robot manipulador (P y PD compensada de gravedad). 2.1. Control P con retroalimentación de velocidad y Control PD. 2.1.1. Robots sin el término de la gravedad. 2.1.2. Robots con el término de la gravedad. 2.1.2.1. Equilibrio único. 2.1.2.2. Acotamiento del error de posición y de la velocidad. 2.2. Control PD con compensación de gravedad. 2.2.1. Función de Lyapunov para estabilidad asintótica global.	del contr de robots condicion Saber ha - Implem de grave posición Ser: Trabajo o	entar control P Y PD compensado dad como medio de control de de robots manipuladores. colaborativo, comunicación y autonomía en el	Estrategia Pre-instruccionales: - Rescatar conocimiento previo. Estrategia Co-instruccionales: - Exposición del docente con ayuda de herramientas didácticas electrónicas Identificación de la información respecto a los contenidos propuestos en la unidad Uso de herramientas electrónicas para apoyo didáctico. Estrategia Post-instruccionales: - Uso de software para simulación por computadoras sobre los subtemas vistos y aprendidos en la unidad.	Evaluación diagnóstica: - Examen de diagnóstico p cuestionario escrito o en ur digital. Evaluación formativa: - Actividades y tareas de a como mapas mentales y/o - Uso de software para sim computadora para análisis de control P y PD compens gravedad a un robot manip Evaluación Sumativa: - Examen teórico aplicado	prendizaje conceptuales. nulación por de un sistema sado de nulador.		vidades, tareas, los o conceptuales, uso de ación por computadoras
			- Elaboración de mapas mentales y/o conceptuales.	- Portafolio de evidencias.			

Continuación: Tabla 4.2. Desglose específico de la unidad "Control de posición del robot manipulador (P y PD compensada de gravedad)."						
Temas y subtemas (secuencia)	Criterios de desempeño	Estrategias didácticas	Estrategias de evaluación	Producto Integrador de la unidad		
		- Resolución de dinámicas, tareas, trabajos				
		y/o actividades.				

- Kelly, R.; Santibáñez, V. (2003). Control de Movimiento de Robots Manipuladores. México: Pearson Education.
- Spong, M.W.; Vidyasagar, M. (2008). Robot Dynamics and Control. USA: Wiley India Pvt.
- Barrientos, A.; Cruz, A.B.; Peñín, L.F.; Balaguer, C. (2007). Fundamentos de robótica. México: McGraw-Hill.
- Marco A.; Pérez, E. A.; Navarro, D. (2014). Fundamentos de robótica y mecatrónica con MATLAB y Simulink. México: Alfaomega: Ra-Ma.
- Cortés, F.R. (2011). Robótica: Control de Robots Manipuladores. México: Alfaomega.

Tabla 4.3. Desglose específico de la unidad "Control de posición del robot manipulador (PD compensada precalculada de gravedad y PID)."

Número y nombre de la u	unidad: 3. Control de posición del robo	t manipulador (PD compensada precalc	ulada de gravedad y PID).	
Tiempo y porcentaje para esta ι	unidad: Teoría: 6 h	oras Práctica:	4 horas Pord	centaje del programa: 13.89%
Aprendizajes espe	erados: Conocer los fundamentos de P	D compensada precalculada de graveda	ad y PID en los robots manipulador	res.
Temas y subtemas (secuencia)	Criterios de desempeño	Estrategias didácticas	Estrategias de evaluación	Producto Integrador de la unidad (Evidencia de aprendizaje de la unidad)
3. Control de posición del robot	Saber:	Estrategia Pre-instruccionales:	Evaluación diagnóstica:	- Portafolio de evidencias donde se
manipulador (PD compensada	- Conocer los fundamentos e importancia	- Identificar conocimientos previos.	- Examen de diagnóstico por medio de	e un contemplan las actividades, tareas, los
precalculada de gravedad y PID).	del control PD compensada precalculada		cuestionario escrito o en una plataforr	mapas mentales y/o conceptuales, uso de
3.1. Control PD con compensación	de gravedad y su contraste con el control	Estrategia Co-instruccionales:	digital.	software para simulación por computadoras
precalculada de gravedad.	PID en el control de posición de robots	- Exposición del docente con ayuda de		un sistema de control de robots
3.1.1. Acotamiento de errores de posición y	manipuladores.	herramientas didácticas electrónicas.	Evaluación formativa:	manipuladores.
de la velocidad.		- Identificación de la información respecto	- Actividades y tareas de aprendizaje	·
3.1.2. Equilibrio único.	Saber hacer:	a los contenidos propuestos en la unidad.	como mapas mentales y/o conceptual	es.
3.1.3. Estabilidad asintótica global.	- Aplicar control PD compensada	- Uso de herramientas electrónicas para	- Uso de software para simulación por	
3.1.4. Función de Lyapunov para	precalculada de gravedad y PID a sistemas	apoyo didáctico.	computadora para análisis de un siste	ma
estabilidad asintótica global.	de robots manipuladores.		de control P y PD compensado de	
3.2. Control PID.		Estrategia Post-instruccionales:	gravedad a un robot manipulador.	
3.2.1 Función candidata de Lyapunov.	Ser:	- Uso de software para simulación por		
3.2.2 Derivada temporal de la función	Trabajo colaborativo, comunicación	computadoras sobre los subtemas vistos y	Evaluación Sumativa:	
candidata de Lyapunov.	efectiva y autonomía en el	aprendidos en la unidad.	- Examen teórico aplicado en el parcia	al.
3.2.3 Estabilidad asintótica.	aprendizaje.	- Elaboración de mapas mentales y/o	- Portafolio de evidencias.	
3.2.4 Procedimiento de sintonía.		conceptuales.		

Continuación: Tabla 4.3. Desglose específico de la unidad "Control de posición del robot manipulador (PD compensada precalculada de gravedad y PID)."				
Temas y subtemas (secuencia)	Criterios de desempeño	Estrategias didácticas	Estrategias de evaluación	Producto Integrador de la unidad
		- Resolución de dinámicas, tareas, trabajos		
		y/o actividades.		

- Kelly, R.; Santibáñez, V. (2003). Control de Movimiento de Robots Manipuladores. México: Pearson Education.
- Spong, M.W.; Vidyasagar, M. (2008). Robot Dynamics and Control. USA: Wiley India Pvt.
- Barrientos, A.; Cruz, A.B.; Peñín, L.F.; Balaguer, C. (2007). Fundamentos de robótica. México: McGraw-Hill.
- Marco A.; Pérez, E. A.; Navarro, D. (2014). Fundamentos de robótica y mecatrónica con MATLAB y Simulink. México: Alfaomega: Ra-Ma.
- Cortés, F.R. (2011). Robótica: Control de Robots Manipuladores. México: Alfaomega.

Tabla 4.4. Desglose específico de la unidad "Control de movimiento robot manipulador."

Número y nombre de la unidad: 4. Control de movimiento robot manipulador.						
Tiempo y porcentaje para esta u	unidad: Teoría: 6 h	oras Práctica:	4 horas	Porcentaj	e del programa:	13.89%
Aprendizajes espe	erados: Aprenderá los fundamentos y	herramientas para controlar los sistemas	dinámicos y control de pos	sición de robo	ts manipuladores.	
Temas y subtemas (secuencia)	Criterios de desempeño	Estrategias didácticas	Estrategias de evalu	ıación	Producto Integra	ador de la unidad ndizaje de la unidad)
4. Control de movimiento.	Saber:	Estrategia Pre-instruccionales:	Evaluación diagnóstica:		- Portafolio de eviden	cias donde se
4.1. Control por precompensación y Control	Identificar los fundamentos y	- Identificar conocimientos previos.	- Examen de diagnóstico por	medio de un	contemplan las activid	dades, tareas, los
PD con precompensación.	herramientas del control de movimiento		cuestionario escrito o en una	plataforma	mapas mentales y/o o	conceptuales, uso de
4.1.1 Control por precompensación.	en sistemas dinámicos de robots	Estrategia Co-instruccionales:	digital.		software para simulad	ión por computadoras
4.1.2 Control PD con precompensación.	manipuladores, así como su contraste con	- Exposición del docente con ayuda de			un sistema de control	de robots
4.1.2.1 Equilibrio único.	el control de posición.	herramientas didácticas electrónicas.	Evaluación formativa:		manipuladores.	de l'obots
4.1.2.2 Estabilidad asintótica global.		- Identificación de la información respecto	- Actividades y tareas de apre	endizaje	mampuladores.	
4.2. Control PD+ y Control PD con	Saber hacer:	a los contenidos propuestos en la unidad.	como mapas mentales y/o cor	nceptuales.		
compensación.	Implementar estrategias de control de	- Uso de herramientas electrónicas para	- Uso de software para simula	ción por		
4.2.1 Control PD+.	movimiento a sistemas dinámicos de	apoyo didáctico.	computadora para análisis de	un sistema		
4.2.1.1 Función de Lyapunov para	robots manipuladores. Aplicación de		de control P y PD compensad	lo de		
estabilidad asintótica.	control de la precompensación, y análisis	Estrategia Post-instruccionales:	gravedad a un robot manipula	ndor.		
4.2.2 Control PD con compensación.	de la estabilidad asintótica del sistema	- Uso de software para simulación por				
4.2.3 Conclusiones.	robótico. Además del Control Par.	computadoras sobre los subtemas vistos y	Evaluación Sumativa:			
4.3. Control Par-Calculado y Control		aprendidos en la unidad.	- Examen teórico aplicado en	el parcial.		
Par-Calculado+.		- Elaboración de mapas mentales y/o	- Portafolio de evidencias.			
4.3.1 Control Par-Calculado.		conceptuales.				
4.3.2 Control Par-Calculado+.						

Continuación: Tabla 4.4. Desglose específico de la unidad "Control de movimiento robot manipulador."				
Temas y subtemas (secuencia)	Criterios de desempeño	Estrategias didácticas	Estrategias de evaluación	Producto Integrador de la unidad
	Ser:	- Resolución de dinámicas, tareas, trabajos		
	Trabajo colaborativo, comunicación	y/o actividades.		
	efectiva y autonomía en el			
	aprendizaje.			

- Kelly, R.; Santibáñez, V. (2003). Control de Movimiento de Robots Manipuladores. México: Pearson Education.
- Spong, M.W.; Vidyasagar, M. (2008). Robot Dynamics and Control. USA: Wiley India Pvt.
- Barrientos, A.; Cruz, A.B.; Peñín, L.F.; Balaguer, C. (2007). Fundamentos de robótica. México: McGraw-Hill.
- Marco A.; Pérez, E. A.; Navarro, D. (2014). Fundamentos de robótica y mecatrónica con MATLAB y Simulink. México: Alfaomega: Ra-Ma.
- Cortés, F.R. (2011). Robótica: Control de Robots Manipuladores. México: Alfaomega.

V. Perfil docente

Tabla 5. Descripción del perfil docente

Perfil deseable docente para impartir la asignatura

Carrera(s): - Ingeniería Mecatrónica.

- Ingeniería en Mecánica Electricista.
- Ingeniería en Instrumentación.
- Ingeniería Electrónica o carrera afín. o carrera afín
 - Deseable que tenga experiencia en instrumentación y control automático, en programación o mantenimiento de robots, o en mantenimiento industrial.
 - Experiencia mínima de dos años
 - Deseable Maestría o Doctorado con especialidad en Control Automático o en Electricidad.